Trust-based local and social recommendation

Simon Meyffret Lionel Médini Frédérique Laforest

University of Lyon, CNRS, France INSA-Lyon, LIRIS, UMR5205, F-69621, France Université Lyon 1, LIRIS, UMR5205, F-69622, France simon.meyffret@liris.cnrs.fr

9 September 2012

Context	State of the art	Social recommendation	Evaluation	Conclusion
Context				

Collaborative Filtering Recommender Systems

- Data management
 - \rightarrow Where are the data?
 - \rightarrow Privacy
- Architecture
 - \rightarrow Data decentralization
 - \rightarrow P2P

Recommender System purely local ⇒ No global knowledge on ratings ⇒ User-centric data management

Context	State of the art	Social recommendation	Evaluation	Conclusion
Context				

Collaborative Filtering Recommender Systems

- Data management
 - \rightarrow Where are the data?
 - \rightarrow Privacy
- Architecture
 - \rightarrow Data decentralization
 - \rightarrow P2P

Recommender System purely local

- \Rightarrow No global knowledge on ratings
- \Rightarrow User-centric data management

Context	State of the art	Social recommendation	Evaluation	Conclusion
Plan				

1 State of the art

- 2 Social recommendationProposition
 - Example
 - CoTCoDepth Scorer

3 Evaluation

- Campaign
- Results

4 Conclusion

Context	State of the art	Social recommendation	Evaluation	Conclusion
Plan				

1 State of the art

2 Social recommendation

3 Evaluation

4 Conclusion

Trust-based Recommender Systems

- MoleTrust [Massa2007]
 - ightarrow trust propagation
- RandomWalk [Jamali2009]
 - \rightarrow purely local
- TrustWalker [Jamali2009]
 - ightarrow default scores based on item similarity

Trust-based Recommender Systems

- MoleTrust [Massa2007]
 - ightarrow trust propagation
- RandomWalk [Jamali2009]
 - \rightarrow purely local
- TrustWalker [Jamali2009]
 - \rightarrow default scores based on item similarity

Trust-based Recommender Systems

- MoleTrust [Massa2007]
 - \rightarrow trust propagation
- RandomWalk [Jamali2009]
 - \rightarrow purely local
- TrustWalker [Jamali2009]
 - \rightarrow default scores based on item similarity

Context	State of the art	Social recommendation	Evaluation	Conclusion
Plan				

1 State of the art

- Social recommendationProposition
 - Example
 - CoTCoDepth Scorer

3 Evaluation

4 Conclusion

Context	State of the art	Social recommendation	Evaluation	Conclusion
Commur	nication			

Solely based on links in the social network

- No new link in the social network
- Trust and similarity weight scores
- Only friends may share data

P2P style communication

- 1 peer = 1 user (*aka* actor)
- 1 link = 1 explicit social link

Context	State of the art	Social recommendation	Evaluation	Conclusion
Commun	ication			

Solely based on links in the social network

- No new link in the social network
- Trust and similarity weight scores
- Only friends may share data

P2P style communication

- 1 peer = 1 user (aka actor)
- 1 link = 1 explicit social link

Context	State of the art	Social recommendation	Evaluation	Conclusion
Propositi	on			

Predict scores through the social network

- If there is a rating on the item, return it
- Otherwise ask friends
- Who will ask their friends
- = ...
- $\rightarrow\,$ Up to depth k

 $\frac{1}{1}$

Context	State of the art	Social recommendation	Evaluation	Conclusion
Propositi	on			

Predict scores through the social network

- If there is a rating on the item, return it
- Otherwise ask friends
- Who will ask their friends
- = ...
- \rightarrow Up to depth k

Trust propagation \Rightarrow Score propagation

Context	State of the art	Social recommendation	Evaluation	Conclusion
Example				

(a) Actors' ratings on item i_0

(b) Social network

Figure : Social network and ratings example centered around a_0

LIRIS

Simon Meyffret

Trust-based local and social recommendation 9 / 22

Score propagation example

Score propagation example

Figure : k-Depth Social Scoring Example with k = 2

Simon Meyffret

Trust-based local and social recommendation 10 / 22

Score propagation example

Figure : k-Depth Social Scoring Example with k = 2

Simon Meyffret

Trust-based local and social recommendation 10 / 22

Score propagation example

Score propagation example

Score propagation example

Context	State of the art	Social recommendation	Evaluation	Conclusion
Algorithr	n			

$$\mathcal{F}_{a,i,\omega}^k = \{ f \in F_a | s_k(f,i) \neq \perp \land \omega_{a,f} \neq 0 \}$$
(1)

$$s_{k}(a,i) = \begin{cases} r_{a,i} & \text{if } \exists r_{a,i} \\ \frac{\sum_{f \in \mathcal{F}_{a,i,\omega}^{k-1}} \omega_{a,f} \times s_{k-1}(f,i)}{\sum_{f \in \mathcal{F}_{a,i,\omega}^{k-1}} \omega_{a,f}} & \text{if } \nexists r_{a,i} \wedge \mathcal{F}_{a,i,\omega}^{k-1} \neq \emptyset \\ default(a,i) & \text{otherwise} \end{cases}$$
(2)

Context	State of the art	Social recommendation	Evaluation	Conclusion
Algorithr	n			

$$\mathcal{F}_{a,i,\omega}^k = \{ f \in F_a | s_k(f,i) \neq \perp \land \omega_{a,f} \neq 0 \}$$
(1)

$$s_{k}(a,i) = \begin{cases} r_{a,i} & \text{if } \exists r_{a,i} \\ \frac{\sum_{f \in \mathcal{F}_{a,i,\omega}^{k-1}} \omega_{a,f} \times s_{k-1}(f,i)}{\sum_{f \in \mathcal{F}_{a,i,\omega}^{k-1}} \omega_{a,f}} & \text{if } \nexists r_{a,i} \wedge \mathcal{F}_{a,i,\omega}^{k-1} \neq \emptyset \\ default(a,i) & \text{otherwise} \end{cases}$$
(2)

Context	State of the art	Social recommendation	Evaluation	Conclusion
Algorithr	n			

$$\mathcal{F}_{a,i,\omega}^k = \{ f \in F_a | s_k(f,i) \neq \perp \land \omega_{a,f} \neq 0 \}$$
(1)

$$s_{k}(a,i) = \begin{cases} r_{a,i} & \text{if } \exists r_{a,i} \\ \frac{\sum_{f \in \mathcal{F}_{a,i,\omega}^{k-1}} \omega_{a,f} \times s_{k-1}(f,i)}{\sum_{f \in \mathcal{F}_{a,i,\omega}^{k-1}} \omega_{a,f}} & \text{if } \nexists r_{a,i} \wedge \mathcal{F}_{a,i,\omega}^{k-1} \neq \emptyset \\ \frac{default(a,i)}{default(a,i)} & \text{otherwise} \end{cases}$$
(2)

∎ Trust

$\rightarrow\,$ Defined by actors on friends

- Correlation (aka similarity)
 - ightarrow Computed by the system between friends

Confidence

- ightarrow On the prediction accuracy
- ightarrow Propagated with scores
- → Recomputed by each actor

Trust

- $\rightarrow\,$ Defined by actors on friends
- Correlation (aka similarity)
 - $\rightarrow\,$ Computed by the system between friends

Confidence

- ightarrow On the prediction accuracy
- ightarrow Propagated with scores
- → Recomputed by each actor

Trust

- $\rightarrow\,$ Defined by actors on friends
- Correlation (aka similarity)
 - $\rightarrow\,$ Computed by the system between friends

Confidence

- ightarrow On the prediction accuracy
- ightarrow Propagated with scores
- ightarrow Recomputed by each actor

Context	State of the art	Social recommendation	Evaluation	Conclusion
Defaul	t score			
lf no s	core computed, ret	urn (or not) a default	score	
≣ In	nprove coverage or	sparse datasets		

Add some randomness

Default score computation:

- Local strategy: $\overline{r_a}$
- Anonymous strategy: $\overline{r_i}$

 $P(\mathit{default}(a,i) \neq \bot) = P_{\mathit{default}}$

Context	State of the art	Social recommendation	Evaluation	Conclusion	
Default s	core				
If no score computed, return (or not) a default score					
Improve coverage on sparse datasets					

Add some randomness

Default score computation:

- Local strategy: $\overline{r_a}$
- Anonymous strategy: $\overline{r_i}$

 $P(default(a, i) \neq \bot) = P_{default}$

Context	State of the art	Social recommendation	Evaluation	Conclusion
CoTCoD	epth			

Confident Trust Correlative k-Depth Social Scorer Propagation up to k = 3 in the social network: © CoTCoD3: $default(a, i) = \bot$ © CoTCoD3_a: $default(a, i) = \overline{r_a}$ © CoTCoD3_{ia}: $default(a, i) = \begin{cases} \overline{r_i} & \text{if } \exists \ \overline{r_i} \\ \overline{r_a} & \text{otherwise} \end{cases}$

Context	State of the art	Social recommendation	Evaluation	Conclusion
Plan				

1 State of the art

2 Social recommendation

3 Evaluationa Campaigna Results

4 Conclusion

Epinions dataset¹ extracted by [Richardson2002]:

- "weakly connected": less than 5 friends
- "fairly connected": 5 to 9 friends
- "highly connected": 10 or more friends

Leave-one-out campaign

• One rating at a time

¹www.epinions.com

Simon Meyffret

Trust-based local and social recommendation 16 / 22

Epinions dataset¹ extracted by [Richardson2002]:

- "weakly connected": less than 5 friends
- "fairly connected": 5 to 9 friends
- "highly connected": 10 or more friends

Leave-one-out campaign

One rating at a time

Simon Meyffret

Trust-based local and social recommendation 16 / 22

 Context
 State of the art
 Social recommendation
 Evaluation
 Conclusion

 Coverage by actors connectivity

 <

Figure : Coverage of CoTCoDepth scorers

Trust-based local and social recommendation 17 / 22

Comparison with existing approaches

Method	Precision	Cov.	F_1	Knowledge
MoleTrust3	0.725	77.25	0.748	extended-local
RandomWalk3	0.682	53.44	0.599	local
CoTCoD3	0.712	77.25	0.741	local
TrustWalker3	0.727	85.99	0.788	local + global
CoTCoD3 _a	0.723	90.50	0.804	local
CoTCoD3 _{ia}	0.730	90.56	0.809	local + anonymous

Table : Results for all actors on Epinions

Context	State of the art	Social recommendation	Evaluation	Conclusion
Plan				

1 State of the art

2 Social recommendation

3 Evaluation

4 Conclusion

Context	State of the art	Social recommendation	Evaluation	Conclusion
Conclusic	on			

Local Recommender System

- Only friends share data
- Score propagation
- Users manage their own profiles
- P2P compliant

Features

- Trust and local similarity
- Confidence on scores
- Default scores

Context	State of the art	Social recommendation	Evaluation	Conclusion
Conclusic	n			

Local Recommender System

- Only friends share data
- Score propagation
- Users manage their own profiles
- P2P compliant

Features

- Trust and local similarity
- Confidence on scores
- Default scores

Context	State of the art	Social recommendation	Evaluation	Conclusion
Perspecti	ves			

On our recommendation approach

- Content-based
- Extended similarity
- Public profiles (experts)
- $\blacksquare \omega$ coefficient depending on the item category

P2P architecture

- Limit network usage (friends subsets)
- Disconnections
- Cache

Context	State of the art	Social recommendation	Evaluation	Conclusion
Perspecti	ves			

On our recommendation approach

- Content-based
- Extended similarity
- Public profiles (experts)
- ${\ensuremath{\,{\scriptscriptstyle \bullet}}}\xspace \omega$ coefficient depending on the item category

P2P architecture

- Limit network usage (friends subsets)
- Disconnections
- Cache

Thanks for your attention...

Bibliography	Epinions	Metrics	More results	ω example	Default score	Confidence
Bibliogr	raphy					
[Jamali2	009] Mohse	en Jamali a	and M. Ester.			
TrustWalker: a random walk model for combining trust-based and item-based recommendation.						
	In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 397–406. ACM, 2009.					
[Massa20	007] Paolo	Massa and	l Paolo Avesa	ni.		
	Trust-aware	recomme	nder systems.			
	In Proceedings of the 2007 ACM conference on Recommender systems, pages 17–24, New York, New York, USA, 2007. ACM.					r 1.
[Richards	son2002] M	atthew Ri	chardson and	Pedro Domi	ingos.	
	Mining know	wledge-sha	aring sites for	viral market	ing.	
	In <u>Proceedi</u>	ngs of the	eighth ACM	SIGKDD int	ernational	
	conference on Knowledge discovery and data mining, pages 61–70,					
	New York,	New York,	USA, 2002.	ACM.		LIRIS
	Simon Meyf	fret	Trust-l	ased local and so	cial recommendation	23 / 22

Epinions statistics:

- 47 000 users
- 104 000 items
- 586 000 ratings
- 509 000 trust values

Views:

- "weakly connected": 47 % of actors, 22 % of ratings
- "fairly connected": 11 % of actors, 12 % of ratings
- "highly connected": 18% of actors, 57% of ratings

Bibliography	Epinions	Metrics	More results	ω example	Default score	Confidence
Metrics						

- <u>Coverage</u>: proportion of predicted ratings regarding all ratings to predict
- Precision: precision metric based on the RMSE (Root Mean Square Error)
- F1-Measure: combination of the coverage and the precision

$$Precision = 1 - rac{RMSE}{range}$$

with $RMSE = \sqrt{rac{\sum_{n=1}^{N} (p_n - r_n)^2}{N}}$
 $F_1 = rac{2 imes Precision imes Coverage}{Precision + Coverage}$

IIR

Bibliography	Epinions	Metrics	More results	ω example	Default score	Confidence
Metrics						

- Coverage: proportion of predicted ratings regarding all ratings to predict
- Precision: precision metric based on the RMSE (Root Mean Square Error)
- F1-Measure: combination of the coverage and the precision

$$\begin{aligned} Precision &= 1 - \frac{RMSE}{range} \\ \text{with } RMSE &= \sqrt{\frac{\sum_{n=1}^{N} (p_n - r_n)^2}{N}} \\ F_1 &= \frac{2 \times Precision \times Coverage}{Precision + Coverage} \end{aligned}$$

IIR

Bibliography	Epinions	Metrics	More results	ω example	Default score	Confidence
Metrics						

- <u>Coverage</u>: proportion of predicted ratings regarding all ratings to predict
- Precision: precision metric based on the RMSE (Root Mean Square Error)
- F1-Measure: combination of the coverage and the precision

$$\begin{aligned} Precision &= 1 - \frac{RMSE}{range} \\ \text{with } RMSE &= \sqrt{\frac{\sum_{n=1}^{N}{(p_n - r_n)^2}}{N}} \\ F_1 &= \frac{2 \times Precision \times Coverage}{Precision + Coverage} \end{aligned}$$

IIR

Figure : Precision of CoTCoDepth scorers

Simon Meyffret

Trust-based local and social recommendation 26 / 22

Method	Precision	Cov.	F_1	Knowledge	
MoleTrust3	0.708	50.51	0.590	extended-local	
RandomWalk3	0.678	37.74	0.485	local	
CoTCoD3	0.701	50.51	0.587	local	
TrustWalker3	0.678	67.50	0.677	local + global	
CoTCoD3a	0.713	65.05	0.681	local	
CoTCoD3 _{ia}	0.724	65.48	0.688	local + anonymous	

Table : Results for cold start users on Epinions

Bibliography	Epinions	Metrics	More results	ω example	Default score	Confidence
ω examp	le					

(a) Friends' trust network

(b) Friends' similarity network

Figure : Trust and similarity networks

Simon Meyffret

Trust-based local and social recommendation 28 / 22

 $P_{default}$ is the probability to return a defined default score

$$P(default(a,i) = \begin{cases} \overline{r_a} \\ \overline{r_i} \end{cases}) = P_{default}$$
(3)

$$P(default(a, i) = \bot) = (1 - P_{default})$$
(4)

In our experimentations : $P_{default} = 0.02$

(a) Similarity network

(b) Score propagation

Figure : Confidence Example

LIRIS